AP Chemistry Chapter 1 Outline

- a) The Study of Chemistry
 - i) Matter: the physical material of the universe; has mass and occupies space
 - ii) Property: any characteristic that allows us to recognize a particular type of matter and to distinguish it from other types
 - iii) Element: basic substance of matter; about 100 different types; can't be broken down into simpler substances <u>Images</u>
 - iv) Atom: tiny building blocks of matter; each element has its own kind of atom(1) Composition: summary of the kinds atoms in a particular type of matter(2) Structure: the arrangement of the atoms in a particular type of matter
 - v) Molecules: two or more atoms joined in specific arrangements/shapes
 - vi) Goal of chemistry: explaining macroscopic behaviors using submicroscopic descriptions

b) <u>Classifications of matter</u>

- i) Physical State, aka states of matter
 - (a) Gas
 - (b) Liquid
 - (c) Solid
- ii) Pure substance: matter that has distinct properties, uniform composition from sample to sample
 - (1) Elements: contain only 1 type of atom
 - (a) 116 known elements
 - (b) Chemical symbols arranged in periodic table
 - (2) Compounds: contain 2 or more kinds of atoms, but only 1 kind of molecule;
 - (a) Can be decomposed into simpler substances by chemical means
 - (b) Have different properties from their constituent elements
 - (c) Law of Definite Proportions (aka constant composition)—Joseph Proust
 - (~ 1800) —the elemental composition of a pure substance is always the same
- iii) Mixtures: combinations of 2 or more substances in which each substance retains its chemical identity
 - (a) May be heterogeneous: composition, properties and appearance vary throughout
 - (b) May be homogeneous: uniform throughout; also known as solutions
- c) Properties of Matter
 - i) Every substance has a unique set of properties.
 - ii) Physical properties: can be measured without changing identity or composition of substance
 - (a) Color, odor, density, melting point, hardness, etc.
 - iii) Chemical properties: describe the way a substance may change (react) to form other substances
 - iv) Intensive properties: do not depend on amount of substance(1) Temperature, melting point, density

- (2) Can be used to identify substances
- v) Extensive properties: depend on the quantity/amount of substance (1) Mass, volume
- vi) Physical changes: physical appearance of substance changes, but not its composition (1) Changes of state
- vii) Chemical changes (aka chemical reactions): substance transformed into a chemically different substance
- Separation of mixtures by taking advantage of the different properties of the viii) components
 - (1) Filtration: separation of a solid from a liquid by passing it over a porous medium (filter paper
 - (2) Distillation: separation based on different boiling points of substances
 - (3) Chromatography: separation based on different abilities of substances to adhere to the surfaces of various solids
- d) Units of Measurement
 - i) Quantitative Measurements: associated with numbers

ii) SI units:

n) Si dints.		
Physical Quantity	Name of Unit	Abbreviation
Mass	Kilogram	Kg
Length	Meter	М
Time	Second	s (or sec)
Temperature	Kelvin	К
Amount of substance	Mole	Mol
Electric current	Ampere	А
Luminous intensity	Candela	cd

- (1) Prefixes: See Table 1.5 for the complete list. These are especially important conversions: $10^6 \mu g = 10^3 mg = 1 g = 10^{-3} kg$
- (2) $K = {}^{o}C + 273.15$
- (3) ${}^{o}C = \frac{5}{9}({}^{o}F 32) \quad OR \quad {}^{o}F = \frac{9}{5}({}^{o}C) + 32)$
- (4) Absolute zero: lowest possible temperature
- (5) Common non-SI volume units: mL, cm^3 , L, dm^3
 - (a) Common devices to measure volume: syringes, burets, pipets, graduated cylinders, volumetric flask
- (6) $Density = \frac{mass}{volume}$

- (a) Densities are temperature dependent; therefore, temperature should be specified when reporting density of a substance
- e) Uncertainty in measurement
 - i) Exact numbers: defined values (in conversion factors) or counted
 - ii) Inexact numbers: numbers obtained by measurement; inexact due to equipment errors or human errors
 - iii) Uncertainty always exists for measured quantities.

- iv) Precision: measure of how closely individual measurements agree with each other
- v) Accuracy: how closely individual measurements agree with correct value
- vi) **Significant figures**: Measured quantities are generally reported in such a way that only the last digit is uncertain.
- vii) All digits of a measured quantity are significant figures.
 - (1) \pm notation: one way to express uncertainty, but often not shown (however, it may become relevant in error analysis)
 - (2) Counted values have infinite significant figures

(3) Significant Figure Rules:

- (a) All non-zero digits are significant.
- (b) Captive zeroes are significant.
- (c) Leading zeroes are never significant.
- (d) Trailing zeroes are significant only if the number contains a decimal.
- (e) In scientific notation, all digits before the exponential term are significant.
- (f) When performing calculations using measured quantities, the least certain measurement limits the certainty of the calculate quantity.
 - (i) When adding and subtracting, round based on fewest decimal places.
 - (ii) When multiplying and dividing, round based on fewest significant figures.
- f) Dimensional Analysis
 - i. Use of "conversion factors" with accompanying units to aid in problem solving
 - 1. Ratios, often considered to have infinite significant figures

?
$$s = 2.0 \text{ yr x} \frac{365 \text{ days}}{1 \text{ yr}} \times \frac{24 \text{ hr}}{1 \text{ day}} \times \frac{60 \text{ min}}{1 \text{ hr}} \times \frac{60 \text{ s}}{1 \text{ min}}$$

= 6.3 x 10⁷ s (to 2 significant figures)