AP Chemistry Chapter 17 Outline

- 1. The Common-Ion Effect
 - i. If you add a salt that contains an ion formed as a product in the equilibrium, the equilibrium will shift to the left.
 - ii. Formally: <u>The extent of ionization of a weak electrolyte is decreased</u> by adding to the solution a strong electrolyte that has an ion in common with the weak electrolyte.
 - 1. Basically, treat these as ICE-strategy problems. The salt is considered an initial source of the common ion. Proceed as with any equilibrium problem.
- 2. Buffers
 - a. <u>Solutions which can resist drastic changes in pH</u> when small amounts of strong acid or strong base are added VERY IMPORTANT TOPIC
 - b. Buffers contain a weak acid with a salt of its conjugate base.
 - i. OR, a weak base with a salt of its conjugate acid HX + MX
 - ii. Add OH^- to solution: reacts with the acid to produce X^- :
 - 1. $OH- + HX \rightarrow H_2O + X^-$
 - 2. [HX] decreases, [X-] increases but ratio changes only slightly, so pH change is small
 - iii. add H^+ to solution: reacts with the conjugate base:
 - 1. $H^+ + X^- \rightarrow HX$
 - 2. [X⁻] decreases, [HX] increases; if the ratio changes only slightly, pH change is small

- c. Use an ICE approach to calculate the pH of a buffer system
 - i. Can use the Ka expression

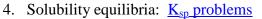
1. from rearranging the K_a expression:
$$[H^+] = K_a \frac{[A]}{[HA]}$$

- 2. $pH = -log[H^+]$
- ii. Can also use the Henderson-Hasselbach equation

1.
$$pH = pK_a + \log \frac{[base]}{[acid]}$$
 Be careful—only use this equation for

buffer systems!

2.
$$pK_a = -\log K_a$$

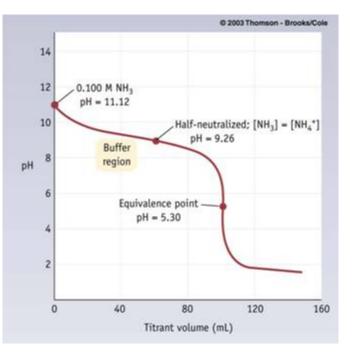

- d. Buffer capacity
 - i. the amount of acid or base the buffer can neutralize before the pH begins to change appreciably
 - ii. Depends on the amount (moles) of weak acid and conjugate base used to prepare the buffer

- e. pH of the buffer depends on the K_a for the acid & relative concentrations of base and acid
 - i. The pH range of the buffer is the pH range over which the buffer acts effectively
 - ii. Buffers usually have a usable range with ± 1 pH unit of the pK_a of the acid
- f. Addition of strong acids or bases to buffers
 - i. Can assume that all of the strong acid or base is consumed (as long as we don't exceed the buffering capacity)
 - 1. Use stoichiometry to calculate the amount of weak acid left, total concentration of weak base present after neutralization of the strong acid or base
 - 2. Use the H-H equation to calculate new pH (alternatively, use ICE approach and the Ka expression)

3. <u>Acid-Base Titrations</u>

- a. A solution containing a known concentration of base is slowly added to an acid (or, the acid is added to the base) This is a critically important topic!
- b. <u>Equivalence point</u> = the point at which stoichiometrically equivalent quantities of acid and base have been combined
 - i. Use acid-base indicators or pH meter to determine the equivalence point
 - ii. Titration curve = plot of pH vs. volume of added titrant
- c. Strong acid-strong base titrations
 - i. Low initial pH, very slow pH changes at first (based on concentration of unneutralized acid), then very sudden pH changes near equivalence point
 - ii. pH = 7 at equivalence point
 - iii. pH levels off, determined by concentration of excess base
 - iv. choose indicator to change color in correct pH range: phenolphthalein is often used
- d. <u>Weak acid-strong base titrations</u> Check out the animations and pay close attention to the predominant chemical species as the titration proceeds
 - i. Initial pH depends on Ka value, concentration of weak acid (Section 16.6)1. Is higher than pH of a strong acid at the same concentration
 - ii. As base is added, a buffer system develops, (can use H-H here)
 - iii. At the half-titration point, pH = pKa
 - iv. pH > 7 at equivalence point, because the anion of the salt formed is a weak base (KNOW THIS!)
 - 1. pH change for rapid-rise portion is smaller for weak acid than for a strong acid
 - v. pH levels off, determined by concentration of excess base
 - vi. choice of indicator is quite important: Choose an indicator with a pKa close to expected pH of endpoint, or with color change in expected pH range

- e. Weak-base strong acid titrations
 - 1. Starts at a high initial pH (depends on the Kb and concentration of the weak base)
 - 2. As acid is added, the pH drops
 - 3. pH < 7 at endpoint, because the weak acid is formed
 - 4. Choose an indicator that will change color near the pH of the expected endpoint
- Titrations of polyprotic acids f.
 - i. Reactions with OH- proceeds in a series of steps, each with a distinctive equivalence point



- If $AB(s) \rightleftharpoons A^+(aq) + B^-(aq)$ a.
 - i. $K_{sp} = [A^+][B^-]$

CRITICAL PROBLEM TYPE

if
$$AB_2(s) \rightleftharpoons A^+(aq) + 2B^-(aq)$$

- $\mathbf{K}_{sp} = [\mathbf{A}^{\mathsf{T}}][\mathbf{B}^{\mathsf{T}}]$
- ii. Note that the solids are always the reactants in the equations
- iii. K_{sp} values are generally very small; it's an equilibrium constant & is unitless
- iv. Solubility of a substance = the quantity of that substance that dissolves to form a saturated solution; may be expressed as g/L or molarity
- b. 2 main types of K_{sp} problems:
 - i. Calculate K_{sp} from solubility
 - ii. Calculate solubility from K_{sp}
 - iii. For both types:
 - 1. start with a balanced equation for the undissolved solid and its ions in solution
 - 2. write a K_{sp} expression
 - 3. set up an ICE table to determine relative concentrations of ions, then solve!
- 5. Factors that affect solubility
 - a. Common ion effects
 - i. In general, the solubility of a slightly soluble salt is decreased by the presence of a second solute that contains an ion in common with the slightly soluble salt.
 - 1. Use an ICE approach and solve as an equilibrium problem
 - a. In the ICE table, use the concentration of the common ion in solution as the initial concentration
 - b. Usually, x << [initial]

- b. Solubility and pH
 - i. If the anion of the solute is basic, the solubility of the salt will increase as pH is lowered.
 - 1. Basic anions: carbonate, phosphate, cyanide, sulfide, fluoride, hydroxide
 - a. These are the conjugate bases of weak acids
 - ii. Salts whose anions are the anions of strong acids are unaffected by pH.
- c. Formation of complex ions
 - i. Complex ion = assembly of a metal ion and the Lewis bases attached to it
 - ii. Transition metal ions can act as Lewis acids
 - 1. Water molecules and other Lewis acids can react with metal ions
 - 2. Lewis acid-base reactions that result in complex ions can dramatically increase the solubility of a slightly soluble salt
 - a. Metals that often form complex ions: Al³⁺, Ag⁺, Cu²⁺, Zn²⁺, Ni²⁺, Co²⁺ (this is not an exhaustive list)
 - b. Lewis bases (aka ligands) often found in complex ions: NH₃, H₂O, CN⁻, OH⁻ especially if they are stated to be concentrated or "in excess"
 - c. Rule of them: when in doubt, number of ligands = 2x the charge of the metal cation
 - iii. Amphoteric acids and bases
 - 1. can be made to dissolve in either acidic or basic conditions
 - 2. Oxides and hydroxides of Al^{3+} , Zn^{2+} , Cr^{3+} , Sn^{2+}
 - a. they dissolve in acidic solutions because they have basic anions
 - b. they dissolve in strongly basic solutions because they form complex ions involving hydroxides
- 6. Precipitation and Separation of Ions
 - a. Use the reaction quotient, Q
 - i. If Q > K, too much product—thereforem precipitation will occur (until Q = K)
 - ii. If Q = K, solution is saturated and is at equilibrium
 - iii. If Q < K, too much reactant—therefore solid will dissolve (until Q = K)
 - b. <u>Selective precipitation of ions</u>
 - i. Use the K_{sp} values and K_{sp} expressions to determine the concentration of the common ion needed to precipitate each salt
 - 1. The salt with the lowest K_{sp} is the least soluble and would precipitate first
 - 2. Be careful about comparing salts with different total numbers of ions—you will need to do Q calculations before determining which will precipitate first

7. Qualitative analysis for metallic elements

- a. Know your solubility rules!
 - i. Do the most selective separations first: the ones that take out the smallest number of ions
 - ii. Can do additional testing, as well:

1. Flame tests:

2. Metal ion	3. Flame color
4. Potassium	5. Lavender
6. sodium	7. Yellow-
	orange
8. Copper	9. green
10. Strontium	11. red