AP Chemistry

Chapter 6 Outline

- a) The Wave Nature of Light
 - i) Electromagnetic radiation = radiant energy
 - (1) Many forms, including visible light
 - (2) Speed of light in a vacuum is a constant $c = 3.00 \times 10^8 \text{ m/s}$ (on green sheet)
 - (3) wavelength =
 - (a) distance between two adjacent points
 - (b) λ
 - (4) frequency
 - (a) the number of wave fronts that pass a given point in a second $\boldsymbol{\nu}$
 - (b) common unit Hertz, (s^{-1})
 - ii) $c = \lambda v$ CRITICAL EQUATION; be able to use this in calculations
- b) Quantized Energy and Photons
 - i) Energy is quantized: energy can only be released in specific amounts(1) Quantum or photon
 - ii) E = hv CRITICAL EQUATION; be able to use this in calculations (equation and value for h is on green sheet)
 - iii) Radiant energy is quantized photons vs. wave behavior(1) Light possesses both wave-like and particle-like behavior
- c) Line Spectra and the Bohr Model
 - i) Monochromatic light = light of a single wavelength
 - ii) Spectrum = when radiation from a source is separated into its different wavelengths
 - (1) Continuous spectrum = rainbow of colors, containing light of all wavelengths
 - (2) Some radiation sources give off light with only a few, specific wavelengths—<u>line</u> <u>spectra</u>
 - (a) Emission spectra
 - (b) Absorption spectra

(3) Rydberg equation:
$$\frac{1}{\lambda} = R_h \left(\frac{1}{n_i^2} - \frac{1}{n_f^2} \right)$$
 where $n_2 > n_1$

- (4) Not essential, but might be useful...not on the formula sheet
- iii) Bohr's Model...greatly emphasized in redesign of AP Chem
 - (1) Only orbits of certain radii are allowed, corresponding to certain definite energies.
 - (2) An electron in a permitted orbit has an "allowed" energy and will not spiral into the nucleus.
 - (3) Energy is emitted or absorbed by the electron only as the electron changes from one allowed state to another. This energy is emitted or absorbed as a photon.
 - (4) Allowed energy levels vary with n
 - (a) $E = -2.18 \times 10^{-18} J\left(\frac{1}{n^2}\right)$ very useful formula; not on green sheet

anymore!

- (i) Note relationship between E and n
- (b) Ground state = lowest energy state of atom
- (c) Excited state = when the atom is in a higher energy orbit
- (d) The radius increases as n^2
- (e) $\Delta E = E_f E_i = Ephoton = hv$
- d) The Wave Behavior of Matter
 - i) <u>Matter waves</u> --De Broglie
 - (1) Any object with mass and velocity acts as a wave. However, for ordinary matter, the wavelength is so tiny as to be unobservable. For electrons, the wave properties are very significant!
 - (2) $\lambda = \frac{h}{mv}$ Useful formula; no longer on green sheet
 - ii) <u>Heisenberg Uncertainty Principle</u> = It is inherently impossible to simultaneously know both the momentum and location of an electron with any precision.
 - iii) Modern model: the electron is a particle, whose behavior is described in terms appropriate to waves. We can precisely describe the energy of the electron while discussing its location in terms of probabilities.
- e) Quantum Mechanics and Atomic Orbitals
 - i) Wave Mechanics = Quantum Mechanics = incorporates both wave and particle behaviors of electrons
 - (1) Erwin Schrödinger's equation
 - (2) Solutions lead to mathematical functions, called wave functions Ψ (psi)
 - (a) Ψ^2 = probability density = electron density = probability of finding the electron in a certain region of space at a given instant
 - (b) Often represented as "electron clouds"= orbitals = specific distribution of electron density
 - ii) Only certain orbitals, with certain energies, are allowed
 - (1) 3 quantum numbers to describe an orbital
 - (a) Principal quantum number n
 - (b) n = 1, 2, 3, ...
 - (i) as n increases, energy increases & electron is less tightly bound to nucleus
 - (ii) as n increases, the orbital becomes larger

(iii)
$$E_n = -2.18 \times 10^{-18} J\left(\frac{1}{n^2}\right)$$
 just as in Bohr model

- (2) Azimuthal or angular momentum quantum number ℓ
 - (a) $m_{\ell} = 0, ..., n-1$
 - (b) ℓ determines shape of orbital

Value of <i>l</i>	0	1	2	3
Letter used	S	р	d	f

- (1) magnetic quantum number m_{ℓ} (or sometimes just m)
 - (a) $m_{\ell} = -\ell, ..., 0, ..., +\ell$
 - (b) m_{ℓ} determines orientation of orbital in space (aka, how many orbitals in a sublevel)

- ii) electron shell = collection of orbitals with the same value of n
 - (1) The total number of orbitals in a shell is n^2
 - (2) subshell = the set of orbitals that have the same n and ℓ values
 - (3) The shell with principal quantum number n will consist of n subshells
 - (4) Each subshell has specific number of orbitals
 - (a) s orbitals are singlets;
 - (b) p orbitals come in sets of 3;
 - (c) d orbitals come in sets of 5;
 - (d) f orbitals come in sets of 7
- iii) ground state = when electrons are all in their lowest energy orbital
 - (1) excited state = when an electron is occupying a higher energy orbital than normal
- a) <u>Representations of orbitals</u>
 - i) S orbitals
 - (1) Spherically symmetric; often represented as spherical boundary surface
 - (2) Radial probability functions: maximum of function gives most probable distance from nucleus
 - (3) Node = intermediate point at which probability of finding an electron is zero
 - ii) P orbitals first appear in 2^{nd} shell
 - (1) Dumbbell shaped orbitals with two lobes
 - (2) The three orbitals in the set are at 90° angles to each other
 - iii) D orbitals first appear in 3rd shell
 - (1) 4 have "cloverleaf" shape; 5th has two lobes, with a donut (torus)
 - iv) F orbitals first appear in 4th shell
 - (1) 8 lobes! Not even shown in our text!
- f) Many-Electron Atoms
 - i) In a many-electron atom, for a given value of n, the energy of an orbital increases with increasing value of ℓ .
 - (1) The precise energies of the orbitals depends on the atom
 - (2) All orbitals of the same subshell are "degenerate" –they have the same energy as one another
 - ii) Electrons have the property of "spin," which is quantized.
 - (1) Spin magnetic quantum number m_s (or sometimes just s) = $+\frac{1}{2}$, $-\frac{1}{2}$
 - iii) Pauli Exclusion Principle
 - (1) No two electrons in an atom can have the same set of four quantum numbers.
 - (2) An orbital can hold a maximum of two electrons, and they must have opposite spins.
- g) Electron Configuration = the way in which electrons are distributed among the various orbitals of an atom
 - i) Aufbau principle
 - (1) Orbitals are filled in order of increasing energy.
 - (2) Be able to use the <u>periodic table</u> to predict filling sequence
 - ii) <u>Hund's Rule</u>

- (1) For degenerate orbitals, the lowest energy is obtained when the number of electrons with the same spin is maximized.
- (2) For degenerate orbitals, place 1 electron in each orbital, all with parallel spin, before pairing any electrons. This minimizes electron-electron repulsions.
- iii) Orbital notation: arrows and boxes
- iv) Noble gas notation: use symbol of nearest noble-gas of lower atomic number in brackets to represent "noble gas core"
 - (1) Core electrons = inner shell electrons
 - (2) Valence electrons = outer shell electrons, involved in chemical bonding
- v) Transition elements
 - (1) d block elements = elements in groups 3-12
 - (1) Often exhibit exceptional electron configurations
 - (2) It is more stable to have fully filled or half-filled subshells of degenerate orbitals! Cu, Cr, etc.
 - (a) Spherical, symmetrical electron clouds minimize repulsions
- ii) Lanthanides and Actinides
 - (1) Fill the 4f and 5f orbitals, respectively
 - (2) Sometimes exhibit exceptional electron configurations, involving the d electrons
- h) Electron Configurations & The Periodic Table
 - i) Know the locations of the <u>s</u>, <u>p</u>, <u>d</u> and <u>f</u> blocks
 - ii) The periodic table is your best guide to predicting the filling sequence!
 - iii) Representative elements
 - (1) main block elements
 - (2) elements in s and p blocks
 - iv) Valence Electrons
 - (1) For main block elements, group number or (group number -10) gives number of valence electrons
 - (a) For main block elements, we do not consider completely full d or f subshells to be among the valence electrons.
 - (b) For transition elements, we do not consider completely full f subshells to be among the valence electrons.