AP Chemistry Chapter 9 Outline

a) Molecular Shapes

- i) Lewis structures are two-dimensional models and only show the number and types of bonds in a molecule.
 - (1) Lewis structures do not define the three-dimensional arrangement of atoms in a molecule.
- ii) Only a few basic shapes are observed for AB_n molecules.
- b) <u>VSEPR Theory</u>—simple but powerful! *Know this well*.
 - i) Each lone pair, single bond, or multiple bond produces an electron domain around the central atom.
 - ii) The best arrangement of a given number of electron domains is the one that minimizes the repulsions among them.
 - iii) Molecular geometry is determined by the arrangement of only the atoms in a molecule or ion.
 - (1) Any molecule containing only two atoms is linear.
 - (2) Lone pairs exert greater repulsive forces on adjacent electron domains and so tend to compress the bond angles. (Lone pairs occupy more volume than bonds.)
 - (3) Multiple bonds typically occupy more space than single bonds.
 - iv) For larger molecules, which don't have a single central atom but instead several interior atoms, we typically discuss the geometry around the individual atoms.

# of Electron	Electron-	# of Bonding	# of Lone	Molecular	Ideal Bond
Domains	Domain	Domains	Pairs	Geometry	Angles
	Geometry				
2	Linear	2	0	Linear	180°
3	Trigonal Planar	3	0	Trigonal	120°
				Planar	
		2	1	Bent	
4	Tetrahedral	4	0	Tetrahedral	109.5°
		3	1	Trigonal	107°
				Pyramidal	
		2	2	Bent	104.5°
5	Trigonal	5	0	Trigonal	90° or 120°
	Bipyramidal			Bipyramidal	
		4	1	See-Saw	
		3	2	T-shaped	
		2	3	Linear	
6	Octahedral	6	0	Octahedral	90°
		5	1	Square	
				pyramidal	
		4	2	Square planar	

- c) Molecular Shape and Molecular Polarity
 - i) <u>Bond polarity</u> = measure of how equally the electrons in a bond are shared between the two atoms of the bond
 - (1) Can draw as a bond vector
 - (2) Can use δ + and δ to indicate uneven charge distribution
 - ii) As the electronegativity difference between the atoms in the bond increases, the dipole moment of the bond increases.
 - iii) For a molecule containing more than two atoms, the dipole moment of the molecule depends on the polarity of the bonds and their geometric arrangement.
 - (1) The overall dipole moment of a molecule is the vector sum of its bond dipoles.
 - (2) CO_2 is nonpolar, even though the C-O bond is polar.
 - (a) The two dipoles "cancel" each other out.
 - (b) The sum of the vectors is zero
 - (3) H₂O is polar, because the bond dipoles reinforce each other.
 - (4) For very symmetrical shapes, if all the atoms bonded to the central atom are identical, there will be no dipole moment for the molecule: linear, trigonal planar, tetrahedral, square planar, trigonal bipyramidal, and octahedral.

a) Covalent Bonding and Orbital Overlap

- i) Valence Bond Theory
 - (1) Bonds form when a valence atomic orbital of one atom overlaps with that of another atom.
 - (a) The orbitals share a region of space.
 - (b) Now electrons of opposite spin can share the common space between the nuclei. Electrons are simultaneously attracted to both nuclei.
- ii) The optimum distance between the nuclei puts the system at a potential energy minimum.
 - (1) Too far apart: no attractive forces
 - (2) Too close together: lots of repulsion between the nuclei

a) Hybrid Orbitals

- i) Basically, hybrid orbitals are a way to reconcile valence bond theory and observed molecular geometries.
- *ii)* Assume that atomic orbitals on an atom mix to form new "hybrid orbitals" in a process called "hybridization." *Know this table!*

Hybridization	Electron Domain Geometry	Bond angles
sp	Linear	180°
sp^2	Trigonal planar	120°
sp^3	Tetrahedral	109.5°
sp ³ d	Trigonal bipyramidal*	
sp^3d^2	Octahedral*	

^{*}For the redesigned AP Chemistry course, students are no longer required to know hybridizations involving d orbitals, as the evidence to support this has been questioned.

a) Multiple Bonds

- i) Sigma (σ) bonds
 - (1) Electron density is along the bond axis
 - (2) End-to-end overlap of orbitals
- ii) Pi (π) bonds
 - (1) Electron density is above and below the bond axis
 - (a) Side to side overlap of unhybridized p orbitals
 - (b) Atoms must have sp or sp² hybridization to make π bonds
 - (c) Pi bonds tend to be weaker than sigma bonds, because the total orbital overlap is less.
- iii) In general, single bonds are σ bonds. *Know this!*
 - (1) A double bond = 1σ bond & 1π bond Know this!
 - (2) A triple bond = 1σ bond & 2π bonds *Know this!*
 - (3) Double and triple bonds are more common in small atoms (especially C, N, and O). Larger atoms (S, P, Si) do not form π bonds readily.
- iv) Delocalized π bondinghttp://wps.prenhall.com/wps/media/objects/3081/3155729/blb0906/bl09fg30. ipg
 - (1) Resonance structures involving π bonds gives a special stability.
 - (a) The π electrons are in π bonds that extend over more than two bonded atoms.
 - (b) The electrons are "delocalized."