AP® CHEMISTRY EQUATIONS AND CONSTANTS

Throughout the exam the following symbols have the definitions specified unless otherwise noted.

L, mL =	liter(s), milliliter(s)	mm Hg	=	millimeters of mercury
g =	gram(s)	J, kJ	=	joule(s), kilojoule(s)
nm =	nanometer(s)	V	=	volt(s)
atm =	atmosphere(s)	mol	=	mole(s)

ATOMIC STRUCTURE E = energy $E = h\nu$ v = frequency $c = \lambda v$ λ = wavelength Planck's constant, $h = 6.626 \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$ Speed of light, $c = 2.998 \times 10^8 \,\mathrm{m \, s^{-1}}$ Avogadro's number = $6.022 \times 10^{23} \text{ mol}^{-1}$ Electron charge, $e = -1.602 \times 10^{-19}$ coulomb

EQUILIBRIUM
$$K_{c} = \frac{[C]^{c}[D]^{d}}{[A]^{a}[B]^{b}}, \text{ where } a \text{ A} + b \text{ B} \iff c \text{ C} + d \text{ D}$$

$$K_{p} = \frac{(P_{C})^{c}(P_{D})^{d}}{(P_{A})^{a}(P_{B})^{b}}$$

$$K_{a} = \frac{[H^{+}][A^{-}]}{[HA]}$$

$$K_{a} = [OH^{-}][HB^{+}]$$

$$K_b = \frac{[OH^-][HB^+]}{[B]}$$

$$K_w = [H^+][OH^-] = 1.0 \times 10^{-14} \text{ at } 25^{\circ}\text{C}$$

$$= K_a \times K_b$$

$$pH = -\log[H^+], pOH = -\log[OH^-]$$

$$14 = pH + pOH$$

$$pH = pK_a + \log\frac{[A^-]}{[HA]}$$

$$pK_a = -\log K_a, pK_b = -\log K_b$$

KINETICS
$$[A]_t - [A]_0 = -kt$$

$$ln[A]_t - ln[A]_0 = -kt$$

$$\frac{1}{[A]_t} - \frac{1}{[A]_0} = kt$$

 $t_{1/2} = \frac{0.693}{k}$

$$k = \text{rate constant}$$

 $t = \text{time}$
 $t_{1/2} = \text{half-life}$

Equilibrium Constants

 K_n (gas pressures) K_a (weak acid)

 K_b (weak base)

 K_w (water)

 K_c (molar concentrations)

GASES, LIQUIDS, AND SOLUTIONS

$$PV = nRT$$

$$P_A = P_{\text{total}} \times X_A, \text{ where } X_A = \frac{\text{moles A}}{\text{total moles}}$$

$$P_{total} = P_A + P_B + P_C + \dots$$

$$n = \frac{m}{M}$$

$$K = {}^{\circ}C + 273$$

$$D = \frac{m}{V}$$

$$KE_{\text{molecule}} = \frac{1}{2}mv^2$$

$$Molarity, M = \text{moles of solute per liter of solution}$$

Molarity,
$$M = \text{moles of solute per liter of solution}$$

$$A = \varepsilon bc$$

$$PV = nRT$$

$$P_A = P_{\text{total}} \times X_A, \text{ where } X_A = \frac{\text{moles A}}{\text{total moles}}$$

$$P_{total} = P_A + P_B + P_C + \dots$$

$$n = \frac{m}{M}$$

$$K = {}^{\circ}C + 273$$

$$D = \frac{m}{V}$$

$$E_{\text{molecule}} = \frac{1}{2}mv^2$$

Molarity,
$$M = \text{moles of solute per liter of solution}$$

$$A = \varepsilon bc$$

$$P = pressure$$

V = volume

T = temperature

n = number of molesm = mass

M = molar mass

D = density

KE = kinetic energy

v = velocity

A = absorbance

 $\varepsilon = \text{molar absorptivity}$

b = path length

c = concentration

Gas constant,
$$R = 8.314 \text{ J mol}^{-1}\text{K}^{-1}$$

 $= 0.08206 L atm mol^{-1} K^{-1}$

 $= 62.36 \text{ L torr mol}^{-1} \text{ K}^{-1}$

1 atm = 760 mm Hg = 760 torr

STP = 273.15 K and 1.0 atm

T = temperature

q = heatm = mass

Ideal gas at STP = 22.4 L mol^{-1}

THERMODYNAMICS/ELECTROCHEMISTRY

$$q = mc\Delta T$$

$$\Delta S^{\circ} = \sum S^{\circ} \text{ products} - \sum S^{\circ} \text{ reactants}$$

$$\Delta H^{\circ} = \sum \Delta H_{f}^{\circ} \text{ products} - \sum \Delta H_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \sum \Delta G_{f}^{\circ} \text{ products} - \sum \Delta G_{f}^{\circ} \text{ reactants}$$

$$\Delta G^{\circ} = \Delta H^{\circ} - T\Delta S^{\circ}$$

$$= -RT \ln K$$

$$= -nFE^{\circ}$$

$$I = \frac{q}{t}$$

 $E_{cell} = E_{cell}^{o} - \frac{RT}{nF} \ln Q$

c = specific heat capacity

Faraday's constant,
$$F = 96,485$$
 coulombs per mole of electrons

Q = reaction quotient

$$1 \text{ volt} = \frac{1 \text{ joule}}{1 \text{ coulomb}}$$